We put the Samsung Galaxy Z Fold5 through our rigorous DXOMARK Display test suite to measure its performance across four criteria. In this test results, we will break down how it fared in a variety of tests and several common use cases.
Overview
Key display specifications:
- 7.6-inch AMOLED
- Dimensions: 154.9 x 67.1 x 13.4 mm (6.10 x 2.64 x 0.53 inches)
- Resolution: 1812 x 2176 pixels (~373 ppi density)
- Refresh rate: 120 Hz
Scoring
Sub-scores and attributes included in the calculations of the global score.
Samsung Galaxy Z Fold5
142
display
136
Samsung Galaxy S24 Ultra
Best: Samsung Galaxy S24 Ultra (164)
144
Google Pixel 8
Best: Google Pixel 8 (165)
149
Samsung Galaxy S23
Best: Samsung Galaxy S23 (163)
135
Google Pixel 7 Pro
Best: Google Pixel 7 Pro (164)
Position in Global Ranking
26
th
2. Samsung Galaxy S24 Ultra
155
3. Samsung Galaxy S24+ (Exynos)
154
3. Samsung Galaxy S24 (Exynos)
154
8. Apple iPhone 15 Pro Max
151
14. Samsung Galaxy S23 Ultra
148
17. Samsung Galaxy A55 5G
147
19. Apple iPhone 14 Pro Max
146
22. Samsung Galaxy Z Flip5
144
24. Samsung Galaxy A35 5G
143
26. Apple iPhone 13 Pro Max
142
26. Samsung Galaxy Z Fold5
142
30. Samsung Galaxy S23 FE
140
34. Honor Magic4 Ultimate
138
44. Samsung Galaxy S22 Ultra (Snapdragon)
135
44. Xiaomi Redmi Note 13 Pro Plus 5G
135
49. Samsung Galaxy S22+ (Exynos)
134
52. Samsung Galaxy Z Flip4
133
52. Samsung Galaxy S22 Ultra (Exynos)
133
52. Samsung Galaxy S22 (Snapdragon)
133
52. Vivo X80 Pro (MediaTek)
133
57. Samsung Galaxy S22 (Exynos)
132
62. Samsung Galaxy S21 Ultra 5G (Exynos)
131
62. Vivo X80 Pro (Snapdragon)
131
66. Samsung Galaxy Z Fold4
130
66. Samsung Galaxy S21 Ultra 5G (Snapdragon)
130
66. Samsung Galaxy S21 FE 5G (Snapdragon)
130
77. Samsung Galaxy A54 5G
129
81. Apple iPhone 12 Pro Max
127
85. Vivo X60 Pro 5G (Snapdragon)
126
101. Motorola Edge 30 Pro
123
105. Apple iPhone 11 Pro Max
122
105. Motorola Edge 40 Pro
122
109. Apple iPhone SE (2022)
120
115. Samsung Galaxy A52 5G
114
117. Motorola Razr 40 Ultra
113
120. Crosscall Stellar-X5
109
121. Samsung Galaxy A53 5G
108
127. Samsung Galaxy A22 5G
82
Position in Ultra-Premium Ranking
20
th
2. Samsung Galaxy S24 Ultra
155
3. Samsung Galaxy S24+ (Exynos)
154
6. Apple iPhone 15 Pro Max
151
10. Samsung Galaxy S23 Ultra
148
14. Apple iPhone 14 Pro Max
146
17. Samsung Galaxy Z Flip5
144
20. Apple iPhone 13 Pro Max
142
20. Samsung Galaxy Z Fold5
142
25. Honor Magic4 Ultimate
138
32. Samsung Galaxy S22 Ultra (Snapdragon)
135
34. Samsung Galaxy S22+ (Exynos)
134
36. Samsung Galaxy Z Flip4
133
36. Samsung Galaxy S22 Ultra (Exynos)
133
36. Vivo X80 Pro (MediaTek)
133
43. Samsung Galaxy S21 Ultra 5G (Exynos)
131
43. Vivo X80 Pro (Snapdragon)
131
47. Samsung Galaxy Z Fold4
130
47. Samsung Galaxy S21 Ultra 5G (Snapdragon)
130
55. Apple iPhone 12 Pro Max
127
67. Apple iPhone 11 Pro Max
122
69. Motorola Razr 40 Ultra
113
Pros
- Good color fidelity and suitable brightness for HDR10 video content
- Good readability in all tested lighting conditions
- Smooth in most usages
Cons
- Under sunlight, the high brightness mode gives an unnatural aspect to color content
- The crease is visible in most situations
The Samsung Galaxy Z Fold5 provided a decent display performance, demonstrating strong showings in video and color under the updated protocol.
Good readability under sunlight is rare among ultra-premium devices, yet the Z Fold5 achieved good contrast on content viewed even in bright outdoor conditions. Our engineers measured the device’s peak brightness at 1682 nits under bright sunlight. Only slightly detracting from its all-round excellent performance, the Z Fold5’s screen was highly reflective.
The Samsung Galaxy Z Fold5 provided a wide color gamut in its default “Vivid” mode, resulting in pleasant and saturated colors in low light and indoor conditions. When in direct sunlight outdoors, the device’s high brightness mode made some colorful content look slightly desaturated and flat in “Vivid” mode. When tested in the protocol’s natural mode setting, color rendering was faithful, comfortable and pleasant, in most lighting conditions, except under sunlight.
As is typical of many Samsung devices, the Z Fold5’s brightness, colors, and detail rendering make it a good device for watching HDR10 videos in both low-light and indoor conditions.
A recurring issue with many foldable screens is the visibility of a crease when the screen is unfolded. The Z Fold5’s crease was visible in every condition, especially outdoors; and as with other foldable phones, the device was affected by a jello effect — a slight perceptible lag between the right and left sides of the display that can make content appear a bit “bent.” But our engineers observed no frame mismatches when evaluating the Z Fold5 while watching videos.
Its brightness, color, and detail rendering make it a great choice for watching videos. Accurate and reactive, the device felt smooth when browsing the web, and scrolling in the gallery, but sometimes it was prone to reacting to unwanted touches.
Note that DXOMARK tested the Z Fold5’s main screen with its protective screen on, per Samsung’s recommendation to consumers.
Exceptionally, our engineers also measured the peak brightness and reflectance of the Z Fold5’s cover screen, which is not part of the protocol and did not factor into the device’s scoring. The Z Fold5’s cover screen achieved peak brightness at 1710 nits and had the same color gamut as the main screen; moreover, the cover screen was less reflective than the main screen (4.8% vs. 6.3%).
Test summary
About DXOMARK Display tests: For scoring and analysis, a device undergoes a series of objective and perceptual tests in controlled lab and real-life conditions. The DXOMARK Display score takes into account the overall user experience the screen provides, considering the hardware capacity and the software tuning. In testing, only factory-installed video and photo apps are used. More in-depth details about how DXOMARK tests displays are available in the article “A closer look at DXOMARK Display testing.”
The following section focuses on the key elements of our exhaustive tests and analyses performed in DXOMARK laboratories. Full reports with detailed performance evaluations are available upon request. To order a copy, please contact us.
Readability
136
Samsung Galaxy S24 Ultra
Samsung Galaxy S24 Ultra
How Display Readability score is composed
Readability evaluates the user’s ease and comfort of viewing still content, such as photos or a web page, on the display under different lighting conditions. Our measurements run in the labs are completed by perceptual testing and analysis.
Luminance under various lighting conditions
This graph shows the screen luminance in environments that range from total darkness to outdoor conditions. In our labs, the indoor environment (250 lux to 830 lux) simulates the artificial and natural lighting conditions commonly seen in homes (with medium diffusion); the outdoor environment (from 20,000 lux) replicates a situation with highly diffused light.
Contrast under various lighting conditions
This graph shows the screen’s contrast levels in lighting environments that range from total darkness to outdoor conditions. In our labs, the indoor environment (250 lux to 830 lux) simulates the artificial and natural lighting conditions commonly seen in homes (with medium diffusion); the outdoor environment (from 20,000 lux) replicates a situation with highly diffused light.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Photo EOTF
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for still images follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under intensive lighting conditions (20,000 lux) in the low gray level regions.
Luminance vs Viewing Angle
This graph presents how the luminance drops as viewing angles increase.
Skin-tone rendering in an indoor (1000 lux) environment
From left: Samsung Galaxy Z Fold5, Google Pixel Fold, Honor Magic Vs
(Photos for illustration only)
Readability in an outdoor (20 000 lux) environment
From left: Samsung Galaxy Z Fold5, Google Pixel Fold, Honor Magic Vs
(Photos for illustration only)
Average Reflectance (SCI) Samsung Galaxy Z Fold5
Samsung Galaxy Z Fold5
Google Pixel Fold
Honor Magic V2
SCI stands for Specular Component Included, which measures both the diffuse reflection and the specular reflection. Reflection from a simple glass sheet is around 4%, while it reaches about 6% for a plastic sheet. Although smartphones’ first surface is made of glass, their total reflection (without coating) is usually around 5% due to multiple reflections created by the complex optical stack.
Average reflectance is computed based on the spectral reflectance in the visible spectrum range (see graph below) and human spectral sensitivity.
Reflectance (SCI)
Wavelength (horizontal axis) defines light color, but also our capacity to see it; for example, UV is a very low wavelength that the human eye cannot see; Infrared is a high wavelength that the human eye also cannot see). White light is composed of all wavelengths between 400 nm and 700 nm, i.e. the range the human eye can see. Measurements above show the reflection of the devices within the visible spectrum range (400 nm to 700 nm).
This graph shows the distribution of luminance throughout the entire display panel. Uniformity is measured with a 20% gray pattern, with bright green indicating ideal luminance. An evenly spread-out bright green color on the screen indicates that the display’s brightness is uniform. Other colors indicate a loss of uniformity.
PWM Frequency Samsung Galaxy Z Fold5
240 Hz
Bad
Good
Bad
Great
Samsung Galaxy Z Fold5
Google Pixel Fold
Honor Magic V2
Displays flicker for 2 main reasons: refresh rate and Pulse Width Modulation. Pulse width modulation is a modulation technique that generates variable-width pulses to represent the amplitude of an analog input signal. This measurement is important for comfort because flickering at low frequencies can be perceived by some individuals, and in the most extreme cases, can induce seizures. Some experiments show that discomfort can appear at a higher frequency. A high PWM frequency (>1500 Hz) tends to be less disturbing for users.
Temporal Light Modulation
This graph represents the frequencies of lighting variation; the highest peak gives the most important modulation. The combination of a low frequency and a high peak is susceptible to inducing eye fatigue.
Color
144
Google Pixel 8
Google Pixel 8
How Display Color score is composed
Color evaluations are performed in different lighting conditions to see how well the device manages color with the surrounding environment. Devices are tested with sRGB and Display-P3 image patterns. Both faithful mode and default mode are used for our evaluation. Our measurements run in the labs are completed by perceptual testing & analysis.
White point color under D65 illuminant at 830 lux
This graph shows the white point coordinates for the image pattern using the default or the faithful mode. D65 illuminant (6500 Kelvin) is a standard that defines the color of white at midday; it is used for display calibration as a white reference, therefore devices are expected to be at or close to the D65 white point.
Color fidelity
Each arrow represents the color difference between a target color pattern (base of the arrow) and its actual measurement (tip of the arrow). The longer the arrow, the more visible the color difference is. If the arrow stays within the circle, the color difference will be visible only to trained eyes. The tested color mode is the most faithful proposed by each device, and a color correction is applied to account for the different white points of each device.
White color shift with angle
This graph shows the color shift when the screen is at an angle. Each dot represents a measurement at a particular angle. Dots inside the inner circle exhibit no color shift in angle; those between the inner and outer circle have shifts that only trained experts will see; but those falling outside the outer circle are noticeable.
Circadian Action Factor Samsung Galaxy Z Fold5
Samsung Galaxy Z Fold5
Google Pixel Fold
Honor Magic V2
The circadian action factor is a metric that defines how light impacts the human sleep cycle. It is the ratio of the light energy contributing to sleep disturbances (centered around 450 nm, representing blue light) over the light energy contributing to our perception (covering 400 nm to 700 nm and centered on 550 nm, which is green light). A high circadian action factor means that the ambient light contains strong blue-light energy and is likely to affect the body’s sleep cycle, while a low circadian action factor implies the light has weak blue-light energy and is less likely to affect sleeping patterns.
Spectrum of white emission with Night mode ON
Spectrum measurements of a white web page with BLF mode on and off. This graph shows the impact of blue light filtering on the whole spectrum. All other settings used are default, in particular, the luminance level follows the auto-brightness adaptation from the manufacturer.
The wavelength (horizontal axis) defines light color but also the capacity to see it. For example, UV, which has a very low wavelength, and infra-red, which has a high wavelength, are both not visible to the human eye. White light is composed of all wavelengths between 400 nm and 700 nm, which is the range visible to the human eye.
Spectrum of white emission with Night mode OFF
Spectrum measurements of a white web page with BLF mode on and off. This graph shows the impact of blue light filtering on the whole spectrum. All other settings used are default, in particular, the luminance level follows the auto-brightness adaptation from the manufacturer.
The wavelength (horizontal axis) defines light color but also the capacity to see it. For example, UV, which has a very low wavelength, and infra-red, which has a high wavelength, are both not visible to the human eye. White light is composed of all wavelengths between 400 nm and 700 nm, which is the range visible to the human eye.
Video
149
Samsung Galaxy S23
Samsung Galaxy S23
How Display Video score is composed
The video attribute evaluates the Standard Dynamic Range (SDR) and High Dynamic Range (HDR10) video handling in indoor and low-light conditions . Our measurements run in the labs are completed by perceptual testing and analysis.
Video peak luminance vs Lighting conditions
This bar chart presents the peak luminance measured for SDR and HDR10 content on a 10% window white pattern.
Video peak luminance vs Lighting conditions
This bar chart presents the peak luminance measured for SDR and HDR10 content on a 10% window white pattern.
Video rendering in a low-light (0 lux) environment
Clockwise from top left: Samsung Galaxy Z Fold5, Google Pixel Fold, Honor Magic Vs
(Photos for illustration only)
SDR video EOTF curve
These curves represent the SDR video tone distribution for white color.
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for SDR videos follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under bright lighting conditions (830 lux) in the low gray levels region (< 30%).
SDR video EOTF curve
These curves represent the SDR video tone distribution for white color.
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). The standard for SDR videos follows a 2.2 gamma. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under bright lighting conditions (830 lux) in the low gray levels region (< 30%).
HDR10 video EOTF curve
These curves represent the HDR10 video tone distribution for white color.
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). While the PQ (Perceptual Quantizer) standard is reminded here for reference, it cannot be a target for smartphones as it is an absolute standard whereas smartphones adapt their brightness to lighting conditions. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under bright lighting conditions (830 lux) in the low gray levels region (< 30%).
HDR10 video EOTF curve
These curves represent the HDR10 video tone distribution for white color.
The Electro-Optical Transfer Function (EOTF) defines how bits are converted into luminance out of the display. Gray levels (horizontal axis) represent the different shades from pure white (100% gray level) to pitch black (0% gray level). While the PQ (Perceptual Quantizer) standard is reminded here for reference, it cannot be a target for smartphones as it is an absolute standard whereas smartphones adapt their brightness to lighting conditions. The flatter the curves, the harder it is to perceive differences between consecutive shades. This phenomenon is more frequent under bright lighting conditions (830 lux) in the low gray levels region (< 30%).
Gamut coverage for video content under 0 lux environment
The primary colors are measured both in HDR10 and SDR. The solid color gamut measures the extent of the color area that the device can render in total darkness. The dotted line represents the content’s artistic intent. The measured gamut should match the master color space of each video.
Gamut coverage for video content under 830 lux environment
The primary colors are measured both in HDR10 and SDR. The solid color gamut measures the extent of the color area that the device can render in total darkness. The dotted line represents the content’s artistic intent. The measured gamut should match the master color space of each video.
SDR Video Frame Drops FHD at 30 fps
Samsung Galaxy Z Fold5
Google Pixel Fold
Honor Magic V2
SDR Video Frame Drops UHD at 30 fps
Samsung Galaxy Z Fold5
Google Pixel Fold
Honor Magic V2
These gauges present the percentage of frame irregularities in a 30-second video. These irregularities are not necessarily perceived by users (unless they are all located at the same time stamp) but are an indicator of performance.
Touch
135
Google Pixel 7 Pro
Google Pixel 7 Pro
How Display Touch score is composed
We evaluate the touch attributes under many types of contents where touch is key, and requires different behaviors such as gaming (quick touch to response time), web (smooth scrolling of the page) and images (accurate and smooth navigation from one image to another).
Average Touch Response Time Samsung Galaxy Z Fold5
Samsung Galaxy Z Fold5
Google Pixel Fold
Honor Magic V2
Touch To Display response time
This response time test precisely evaluates the time elapsed between a single touch of the robot on the screen and the displayed action. This test is applied to activities that require high reactivity, such as gaming.
DXOMARK encourages its readers to share comments on the articles. To read or post comments, Disqus cookies are required. Change your Cookies Preferences and read more about our Comment Policy.